Related content::

On the 26th of April 2018 more than 30 representatives of  diverse stakeholder communities gathered in Brussels to discuss the risk assessment and governance framework of nanomaterials that are used in semiconductor industry. The workshop, entitled “Governance of emerging nano-risk in semiconductor industry” was organized by  NanoStreeM, caLIBRAte  and KVAB. Nanoelectronics was selected as a interesting use case for risk assessment approaches, due to its rapid innovation cycle and culture of high-profile health, safety and quality management.  Moreover, nanoelectronics is one of the key enablers for industrial development and is responsible for 200K jobs in Europe and approximately 1 million indirect jobs. Therefore, risk management paradigms adopted by nanoelectronics can have widespread social and economic impacts.

The workshop program can be found on the dedicated event page.  The workshop was split into three sessions about

  1. nanomaterials use in the semiconductor industry;
  2. industrial needs and technology advances in risk management;
  3. experiences in risk management from nanomaterials producers and downstream users.

Every session was followed by a moderated discussion by a separate discussion panel of experts, who also took questions from the audience. The workshop profiled 10 invited speakers and 11 panelists from  academia, public research institutions, industry and the European Commission.

The workshop fostered a culture of open and lively discussions. Throughout the day the following challenges were identified

  • There appears to be an exponential growth of ENM entering the market worldwide. This presents both a vital opportunity for rapid economic development and a potential issue presenting unanticipated hazards.
  • It is difficult to reliably predict the hazards and risks related to the use of new nanomaterials. Because of the exponential trend in new materials, the relative lack of resources makes the regulatory approaches challenging.
  • There is a clear safety knowledge gap, notably in emission and exposure assessments. Furthermore, toxicity data about nanoforms of nanomaterials are frequently lacking or are of poor quality.
  • Many nanotoxicity databases developed to date are not available for public use or the available data cover only few materials.
  • Risk analysis is still technically and methodologically limited. Notably, the available models are very generic and difficult to adapt for everyday use by the industries.
Dimiter Prodanov (Imec)
« 1 of 8 »

The panelists and the audience discussed a broad range of questions concluding on two pertinent ones

  1. How can the regulatory framework be adapted to account for the long delays in availability of toxicological and environmental data on nanomaterials, without slowing innovation that comes with the application of these materials?

Discussions confirmed that conventional chemical risk assessment methodology is not adequate for newly developed materials or nanoforms entering the market. It can be concluded that nanomaterial risk assessment requires specialised knowledge in toxicology, exposure, emissions and lifecycle, which is not readily available at present outside  academic communities.

Complexity of the subject and the substantial time lags when data becomes publicly available, poses a definite regulatory challenge. On the other hand, approaches for grouping of nanomaterials in similarity groups (i.e. such as hazard bands or classes), which are developed by some projects and stakeholder groups appear as a pragmatic methodology to advance. The health and safety assessment can be empowered by international standards, such as the ISO/TS 12901-2:2014. Furthermore, experience with proposed generic models to date does not favour a preference over one universal risk assessment framework versus multiple industry/application/material specific risk management tools.

  1. How can upstream developers, suppliers and formulators cooperate with the downstream users in risk assessment guidance and risk management?

Risk acceptance along the supply chain depends strongly on the understanding of the chemical or nanomaterial hazards. Therefore, appropriate communication between the different actors along the supply chain is paramount for successful management of emerging risks and hazards. The panelists agreed that the available regulatory frameworks, such as the REACH Regulation, can be used to communicate hazards of nanomaterials along the supply chain. It can be also concluded that labeling of nanomaterials can be helpful when suitable communication channels are established.


In conclusion, nanotechnology involves a growing number of industrial applications with a large actual economic impact. Nanotechnology is expected to become a key pillar for the European economy of innovation so it is very important to foster an open culture of communication of identified hazards and risks to maximize its socio-economic impact. To this end, it is important to identify appropriate sources of information, and foster communication channels and training opportunities for all actors along the supply chain.

Panel 1

Panel 2


Tools for Assessment of Occupational Health Risks of some Engineered Nanoparticles and Carbon Materials Used…


We are happy to announce that the  Fifth Consortium meeting will take place in Brussels back…