PROSPECTS AND ISSUES OF NANOMATERIALS USE IN MICROELECTRONICS

Michael P. M. Jank, Anton J. Bauer, and Lothar Frey
Fraunhofer Institute for Integrated Systems and Device Technology (IISB), Erlangen, Germany

Background & Motivation

- NanoStreeM
 - Environmental, Safety, and Health (ESH) risks of nanomaterials cannot be derived from their bulk properties
 - Precautionary approaches in order to avoid exposure
 - Promote good practices, identify gaps in methodologies, and support risk assessment to protect human health
- Acquire a comprehensive overview on the utilization and technological issues of particulate nanomaterials in current and future semiconductor manufacturing

Key benefits of nanomaterials

- Nanomaterials have proven capabilities for ultimately scaled or post-silicon devices due to 0D, 1D, and 2D nanosize effects \(\Rightarrow \) nanowire transistors
- Nanomaterials modify matrix (bulk) materials to give enhanced performance
 - Physical properties \(\Rightarrow \) low-k dielectrics
 - Processing \(\Rightarrow \) high-NA immersion litho
- Improve manufacturability as process medium \(\Rightarrow \) CMP

Integration of particulate nanomaterials

- Application of nanoparticle powders and dispersions
 - Functional fillers
 - Dispersions
- Preparation from bulk or direct growth
- Unintended release during deposition, etching, waste treatment, end-of-life

Summary

- Particulate nanomaterials already in use in process media, packaging, and assembly
- Use cases can guide introduction to other areas

Parts of this compilation have been derived from the ITRS chapters on ESH and Emerging Research Materials

This work has received funding from the European Union under its programme Horizon 2020 NANOmaterials: STRategies for Safety Assessments in Advanced Integrated Circuits Manufacturing GA-No. 688194